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The results of an experimental study of the influence of the dimen-
sions of the calorimetric element and the properties of its material on
the measured heat flux are examined. Recommendations for calcu-
lating the thickness of a heat-flux sensor are made, and two methods
of measuring the thermal conductivity of various metals in the case
of samples heated by a plasma jet are proposed.

When an exponential technique is used for measur-
ing heat fluxes, it is imperative to know the influence
of the calorimetric element, the type of material from
which it is made, and the properties of the material
of the protective sleeve on the magnitude of the mea-
sured heat flux.

These problems are of primary importance when
studying heat-transfer intensity by this or other tech-
niques. Study of these problems is also of interest
in the determination of the laws governing heat trans-
fer between solid bodies and plasma flows. It is well
known that heat-transfer intensity under nonstationary
conditions can differ appreciably from heat transfer
under stationary conditions. This leads to the question
of whether results of heat-flux measurements per-
formed by nonstationary methods are suitable for es-

tablishing heat-transfer laws for stationary conditions.

Some of these questions have been studied in [2] by
analyzing the solution to a one-dimensional heat-con-
ductivity equation for boundary conditions of the sec-
ond kind.

In this paper we present the results of an experi-
mental verification of the laws established, and we

examine the conclusions which derive from these laws.

Influence of sample length on the measurement of
heat-transfer intensity. The rate at which an infinite
plate is heated by a steady heat flux can be computed
from expression (20) in reference [1, p. 155]. The
laws which govern heating are given in dimensionless
form in Figure 5.3 of this book. Analysis of the rela-
tions plotted in the figure showed that, starting with
Fg = 0.3, neglect of the series in expression (20) leads
to an error of less than 1%. Hence, for F, = 0.3, we
have

gt gl 3P
S (1)
Taking the time derivative of the temperature, we
get a formula for calculating the heat flux by an ex-
ponential technique,

(2)

From expression (1), it follows [2] that there exists

g=opcl _dt for Fo > 0.3.
dv
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an optimal and a limiting thickness of the calorimet-
ric element which are defined, respectively, by the
relations

fope=0.73 2lm.

(3)
q

lim= 1.46 Im_ .

q

(4)

The time required for the temperature curve to
become linear, and the time to the onset of melting
at the heated surface can be determined, respectively,
from the expressions

(5)

7, = 0.3
e A 1P (6)
ag 3 a

It is obvious that in the case of a steady flux (the
specific heat and density of the material are practi-
cally constants), the temperature measured in any
cross section of the plate (x = const) must be a linear
function of time (1). Hence, if the experimentally ob-
tained relations between temperature and time are
linear, it may be safely assumed that the experimental
conditions were one~dimensional and that the heat flux
was steady.

In [3] it was shown that the heat flux under non-
stationary conditions is affected by the dimensions of
the body measured in the direction of the heat flux;
however, when the dimensions diminish to a certain
value, heat-transfer intensity is no longer influenced
by the dimensions. These findings were checked by ex-
periments in which copper samples of various lengths
were heated in a plasma jet.

The samples were cylinders measuring 10 mm in
diameter and 1, 2.5, 5, 10, 25, 50, and 100 mm long.
One-~dimensional heating was accomplished by pro-
tecting the lateral surface of the samples from heating
by textolite sleeves shaped as a truncated cone and
provided with an axial hole into which the sample fit-
ted tightly. The sleeve, in turn, was fixed in a metal-
lic tube which was aligned with the jet axis by means
of the sensor bracket.

The electric-arc heater in which the gas was heated
is described in [4]. All samples were tested under the
same experimental conditions characterized by the
following parameters: power expended in the arc—
80kW,gas consumption—2 g/sec, diameter of the noz-
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Fig. 2. Sample temperature t (°C) vs. time 7 (sec) for
x=0:1)7=1mm, 2) [=25mm, 3)[=5mm, 4) [=
=10 mm, 5) [ =25 mm, 6) [ =50 mm, 7) = 100 mm,
8) T1is 9) 'Tz.

zle exit section—15 mm, spacing between the nozzle
exit section and the sample—25 mm. These param-
eters correspond to an enthalpy of 14600 kJ/kg (T =
= 6300°K) of the gas flow acting on the sample and to
a stagnation pressure of 1 atm. The maximum devia-
tion of the power and the gas enthalpy from the mean
value was 10%. Samples measuring 1, 2.5, and 5 mm
in length were provided with one thermocouple. Each
of the longer samples was provided with two thermo-
couples at distances of 7 (I is the sample length) and
5 mm from the end face exposed to the jet.

In order to minimize the random error, samples
of all sizes were subjected to heating 3 to 8 times.

3 T
Fig. 1. Sample temperature, t (C) vs. time 7 (sec) for [ — x = 5 mm:
1) 7=5mm, 2) /=10 mm, 3) [= 25 mm, 4) [= 50 mm, 5) [ = 100 mm.

The averaged heating characteristics obtained for cop-
per samples are given in Figs. 1 and 2. Linear seg-
ments on the temperature curves can be observed for
samples of small dimensions. A comparison of the
curves in Figs. 1 and 2 shows that the linear segments
of the curves obtained for various cross sections of
10- and 25-mm-long samples have the same slope.
For 50-mm-long samples, the curves deviate over

the entire heating time.

Analysis of the temperature vs. time curves ob-
tained for the [ — x = 5 mm and x = 0 sections across
the sample (Figs. 1 and 2) shows that a dimension of
roughly 25 mm separates the family of temperature
curves into two parts. For smaller sample dimen-
sions, linear segments can be observed on the tem-
perature vs. {ime curves, while for large dimensions
linear segments are absent.

The time to the commencement and termination of
the linear segments and the limiting sample thickness
can be computed from the formulas given above. The
results of computations performed for copper samples
confirm the conclusions made on the basis of measure-
ments. The computed and measured values of 7y, Ty,
llim> and lgpt are in satisfactory agreement (Fig. 2,
Table 1).

The optimal sample length for the heat flux em-~
ployed is 14.8 mm; this corresponds to a maximum
duration of the linear segment equal to 1.54 sec (Ta~-
ble 1). For sensor dimensions of 30 mm and more, a
linear segment is not observed under the given con-
ditions.

Table 1
Calculation of Sensor Dimensions for Various Metals
tm, °C
. q. lopts I. At ,
Material KW/em? opt’ mm{ ‘jjy MM ggx f‘rom the experiment
literature
Aluminum 1.4 7.8 15.7 0.51 660 640
Tin 0.49 1.9 4.43 0.085 232 220
Copper 1.92 14.8 30.0 1.54 1083 1060
1Cr18Ni9Ti steel 1.58 1.75 3.51 0.05 1535
(iron) —
Brass 1.73 3.06 6.15 0.228 850 830

968




¢ A
x// ®
00 s
2 , / 4
400
0 28 5 T

Fig. 3. Sample temperature t (°C) for various ma-
terials vs. time 7 (sec), for [ = 5 mm: 1) copper,
2) aluminum, 3) brass, 4) tin, 5) stainless steel,

Formal determination of heat fluxes by an exponen-
tial technique (formula (2)) leads to faulty results for
sample dimensions greater than [};,, (and, in practice,
for smaller dimensions close to I{jy).

The heating curves obtained were used for calcu-
lating heat fluxes for various sample lengths (Fig. 4a).
The deviation of the measured values from the mean
value for a length of 25 mm does not exceed 10%. An
exception is the 1-mm-thick sample for which the di-
ameter of the thermocouple junction (0.2-mm-diam
wires were employed) is compatible with the samnble
thickness.

With an increase in dimensions to 50 mm, the de-
viation of the measured heat flux from the actual value
reaches 30%. As has been noted above, this deviation
may be attributed to sample melting prior to the com-
mencement of a linear segment.

The results of the determination of heat fluxes from
temperature gradients measured for various sample
cross sections agree with each other within an error
of less than 12%.

Influence of the material properties of the calori-
metric element on the results of heat-transfer-inten-

sity measurements. The value of the steady heat flux
determined from expression (2) should be independent
of the properties of the calorimetric element. When
the parameter pe varies, the value of dt/dr should
vary in such a way that their product would remain
constant.

With expression (2), however, its range of applica-
bility should be kept in mind. Formal application of
an exponential technique may lead to incorrect results.

Samples for use in heat-flux measurements were
prepared from copper, aluminum, brass, tin, and
stainless steel in the form of 5-mm-long cylinders.
The cylinder diameter and the method of achieving
one-dimensional heating were the same as in the case
of copper sensors of various length. The sample tem-
perature was measured at the cross section x = 0.

On the temperature vs. time curves obtained (Tig.
3), one can distinguish linear segments whose dura-
tion depends on the melting point of the material.
Heat flux calculations on the basis of expression (2)
and of the relations obtained showed that the heat flux
varies depending on the type of material, in spite of
the fact that all the parameters of the hot gas flow
were kept constant in all tests (Fig. 4b). Specific-
ally, for tin, the ratio of the heat flux to the heat flux
measured with a copper calorimeter is equal to 0.26.

The heat flux values measured with sensors made
from other materials lie within £+10-12% of the mean
value; this does not exceed the error involved in the
determination of heat fluxes by an exponential tech-
nique.

The results obtained may be explained by examining
the manner in which the optimum and limiting sensor
lengths depend on the type of material (Table 1).

In the case of tin and steel, the sensor dimension
(5 mm) employed exceeds the limiting value for these
materials. Consequently, on the temperature vs. time
curves for these materials, linear segments are es~
sentially absent, but the curves exhibit an inflection
from concave to convex. Formally, this inflection re-
gion can be taken as a linear one. Heat flux determi-
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Fig. 4. Results of an analysis of the temperature curves: a) heat flux

q (in kW/cm?) vs. sample length [ (in mm), b) relative heat flux ai/dcop

vs. the parameter pep (in kJ/m® - deg), c) thermal conductivity coeffi-

cient A of copper (W/m - deg) vs. temperature t (°C); (1—from paper [5],
2—first method, 3—second method).



nation from the gradient at this region leads to arbi-
trary heat flux values.

Thus, for correct determination of heat fluxes, it
is necessary that the thickness of the calorimetric
element for a given material and a given heat flux lie
within limits which ensure the presence of a linear
segment on the temperature curve. There is an op-
timal thickness of the calorimetric element in each
case.

The experimentally obtained melting points of ma-
terials can serve as an indirect accuracy index for
temperature measurements on samples of various ma-
terials heated in a plasma jet (Table 1). A comparison
shows good agreement between the measured values
and literature data.

Comparison between the exponential technique and
the method of successive intervals. The method of
successive intervals was developed in [3] for deter-
mining time-variable heat fluxes. In the determina-
tion of heat fluxes by this method, it is necessary to
provide one-dimensional heating conditions for cylin-
drical samples, and to record the time variations of
the temperature in an arbitrary cross section of the
sample.

The formula for calculating heat fluxes is

i=n—1
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This formula is also applicable to the case exam-
ined in this paper. Heat fluxes can be determined by
this method with the aid of the temperature vs. time
curves obtained for the determination of heat fluxes
by an exponential technique (Figs. 1,2).

FProceeding from expression (7), we can show that
if the relation t = f(7) is a straight line, the heat flux
does not change in time and is a constant.

If ¢ = const, the time intervals into which the
process is divided are equal, and ty = 0, then

/] . L q l x?
t=—— Ty — — — — _— =
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i.e., we have obtained expression (1) which repre-
sents a linear relation between temperature and time.
The method of successive intervals was used for
calculating heat fluxes for 2.5-, 5-, and 10-mm-long

samples heated in a plasma jet.
The computational formulas are

=25 mm At=0.02 sec; ¢,=0.68-10% Af—1.89 Zg;;
[=5 mmAr=0.1sec; g,=2.3: 105 At—1.6 Zgq;;
[=10 mm Ar=0.3sec; ¢,=1.93:10° At—--2 Zg;.

The difference between heat fluxes determined by both
methods did not exceed 10%. This accuracy may be
considered satisfactory for the given conditions.

It should be emphasized that for small sample
lengths the value of the heat flux measured remains
constant in time. Consequently, the results of heat-
transfer-intensity measurements performed by a non-
stationary method, such as the exponential method
employed, are applicable in the case of heat transfer
under stationary conditions.

For samples of greater length, a relation between
the heat flux and time could not be established in our
experiments, because samples of large dimensions
began to melt prior to the onset of the segment on the
temperature curve of interest to us.

Influence of the properties of the material of the
protecting sleeve on the results of heat-flux measure-
ments. The computational relations of the exponential
method (formula (1) and others) were obtained under
the assumption that the expansion of heat in a sample
is one-dimensional. As has been said above, in order
to obtain a one-dimensional heat flux, the lateral sur-
face of the samples was protected by a textolite sleeve.
The contact surface between the sample and the sleeve
was a 4-mm-wide ring in the proximity of the front
face of the sample. Beyond this ring, there was a
l-mm-wide air gap between the sample and sleeve.

The experimentally observed linear segments on
the temperature curves confirm that heat expansion
in the samples was one-dimensional. The short dura-
tion of the tests and the pronounced difference in the
thermal-conductivity coefficients of the sample and
sleeve were factors favorable for obtaining one-di-
mensional heat expansion.

Additional heating tests were performed with sam-
ples protected by sleeves made of textolite, hard rub-
ber, and asbestos cement. The thermal-conductivity
coefficients of these materials differed by as much as
a factor of three. In the presence of appreciable radial
heat fluxes, such changes in the properties of the pro-
tective sleeve are bound to lead to substantial changes
in the quantity being measured. Measurements showed
that the deviations of the heat-flux values are com-
patible with the conventional measurement error (10—
12%). This result is confirmed by the heating curves
obtained for the samples. The temperatures measured
in samples protected by hard-rubber and asbestos-
cement sleeves lie on either side of the curve obtained
for samples with a textolite sleeve.

Application of sample heating in a plasma jet to the
determination of the thermal-conductivity coefficient
of metals. With the aid of expressions (1) and (2), it
is possible to obtain a relation for calculating ther=-
mal-conductivity coefficients (first method):

Pocydtidt
6tdt/dt — 6t
and a relation for calculating thermal-diffusivity co-
efficients

(9)

forx==0 A=

_ Pdt/d

" Gvdidv—6t
In order to determine A and g from the expressions
obtained, it is necessary to measure the temperature
gradient at the linear segment of the temperature

(10)



curve and the temperature at an arbitrary moment of
time within the linear segment at the end face of the
sample (x = 0). Thermal-conductivity and -diffusivity
coefficients can be determined also by a different
method.

Under the conditions studied, the temperature at
the cross section x of a sample is
qgv _ g
pcl 6

gx*

t. =
¥ ol

For the cross section x = 0, the temperature is

97 __ g
6h

x=0 =

By subtracting the second expression from the first,
after certain transformations and substitution of g,
from (1), we get (second method)

2
_ pexidid < (11)
2 (tx__ tx=0)
and
2
x dt (12)

T Sty dv
For determining A and a in this case, it is necessary
to measure the temperature difference at two cross
sections of the sample and the temperature gradient at
the linear segment of the heating curve.

By using the methods studied, it is possible to de~
termine mean values of the thermal-conductivity coef-
ficient for temperatures lying within the linear seg-
ment.

The samples used for determining thermal-conduc-
tivity coefficients had a simple configuration, quite
similar to that of the heat-flux sensors discussed
above.

To determine the thermal-conductivity coefficient
of copper by the first method, use was made of the
heating curve obtained for a 10-mm-long sample (Fig.
2). The density of copper in the temperature range
between 25 and 670° C is taken as 8800 kg/m®, and the
specific heat as 0.42 kJ/kg-deg. The rate at which
the temperature varies over a linear segment is

dt  670—25

dt 1402
The thermal conductivity coefficient (7 = 0.4 sec, t=
= 130° C) is Agye ¢ = 383 W/m-deg. The value ob~
tained differs by 2.8% from the value of the thermal-
conductivity coefficient of copper for 300° C taken
from the handbook.

The first method was used also to determine the
thermal-conductivity coefficients of 2.5-, 5~, and
25-mm-long copper samples. The values obtained
deviate by 6 to 13% from the corresponding tabulated
values (Fig. 4c). For a 25-mm-long sample, the
thermal-conductivity coefficient was determined also
by the second method. The calculated value differs by
9.2% from the tabulated value for pure copper at
tmean = 200°C.

= 540 deg/sec.
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Table 2

Results of the Determination of the Thermal-Conductivit
Coefficients of Some Metals

Material A4 fromfs, 6] A2 experimental ’—Z—EI}L‘ . %
20.4 24.3 19
1Cr18Ni9Ti steel (=600 °C) (¢ m =600 °C)
55 57 3.6
Tin (t=0°C) (tm=100 °C)
195127 | 148 —
Aluminum (=200°C) | (,,=200°C)
|

110 95
Brass | (=400 °0) (t =400 °C)

Thus, the properties of the copper employed in the
experiments approach rather closely those of elec-
trolytic copper. The methods developed yield satis-
factory results. They were used to determine the
thermal-conductivity coefficients of other metals from
which calorimetric elements were made. The density
and specific heat of materials are taken from [5, 6].
The rate of temperature variation was determined from
the curves in Fig. 3.

The thermal conductivities determined for four
metals (Table 2) confirm the effectiveness of the meth-
od discussed. Ii is possible that the error of 19% in-
volved derives not only from measurement errors but
also from a difference in the types of steel compared.

NOTATION

t is temperature, g is the specific heat flux, 7 is
time, [ is the length of calorimetric element, x is the
distance from the rear face of a sample to the cross
section studied, ty, is the melting point of the material,
ATmax 18 the maximum time interval for a linear seg~
ment, n is the number of the time interval, {; is the
initial temperature of a sample.
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